

Flexbeam Guardrail Roadside Safety Barrier

Product Manual

www.ingalcivil.com.au

1.0 Introduction

Roadside barriers have been developed over the years to safely redirect vehicles that leave the roadway. Many different rigid, semi-rigid and flexible designs for roadside barriers have evolved. The most common system consists of a steel w-beam rail supported on steel posts with end treatments and transitions of various designs using similar materials.

Ingal Civil Products' Flexbeam guardrail's uniformly high resistance to impacts is assured by its continuous flexible beam action. This prevents dangerous pocketing and minimises the ride down deceleration experienced by the vehicle and its occupants.

The high visibility of Flexbeam guardrail creates driver confidence. This is an intangible but exceedingly important factor. At night or in fog conditions, the excellent visibility of Flexbeam guardrail highlights the limit of safe travel and reduces dangerous centreline crowding.

2.0 Standards

Flexbeam guardrail is manufactured in accordance with the following;

- AS/NZS 3845:1999 Road safety barrier systems
- AS/NZS 4680:2006 Hot-dip galvanized (zinc) coatings

3.0 Specifications

Table 1: Flexbeam Panels - 2.7mm base metal thickness				
Nett Laying Length (mm)	Ingal Part No.	Mass (kg)		
1000	C1364G	14.1		
2000	C1373G	25.0		
2500	C1381G	30.5		
3000	C1195G	36.0		
3810 (12'6")	C1355G	44.6		
4000	C1351G	46.7		
5000	C1356G	57.6		

Table 2: Charlie Posts 150x110x4.3mm

Post Length (mm)	Ingal Part No.	Mass (kg)	
700 with Base Plate	C1432G	17.2	
750 with Base Plate	C1409G	17.9	
1800	C1402G	23.6	
1850	C1415G	24.4	
2100	C1444G	27.6	
2400	C1458G	31.6	

Table 3: U Channel Posts 1	78x76x6.0mm
----------------------------	-------------

Post Length (mm)	Ingal Part No.	Mass (kg)		
700 with Base Plate	C1135G	17.0		
1600	C1095G	23.3		
1675	C1090G	24.4		
1800	C1100G	26.3		

4.0 Barrier Deflection

The expected deflection of the barrier should not exceed the available room to deflect. If the available space between the hazard and the barrier is not adequate, then the barrier can be stiffened in advance of, and alongside the hazard. Commonly used methods to reduce deflection of Flexbeam guardrail include reducing the post spacing, nesting the rail or transitioning to a stiffer barrier such as Thriebeam guardrail.

Table 4: Flexbeam & Thriebeam Deflection Values				
System Type	Post Spacing	Dynamic Deflection ¹		
AASHTO G4 W Beam	2.0m	1.0m		
Type B Guardfence	2.5m	1.0m		
AASHTO G9 Thriebeam	2.0m	0.6m		

¹ Sources: AS/NZS 3845:1999 & VicRoads Model Drawing SD3501E

5.0 Thriebeam Guardrail

An important attribute of Thriebeam guardrail is its high level of performance especially for large vehicles. Due to the greater height of the rail face, Thriebeam guardrail provides reduced deflection and improved resistance to vehicle vaulting or under running. The reduced dynamic deflection and maintenance demand makes Thriebeam guardrail ideally suited for major facilities carrying a high volume of high-speed traffic. Thriebeam guardrail should also be used in transition from Flexbeam guardrail to more rigid barriers. This significantly reduces the deflection of the barrier system at transition to the rigid barrier.

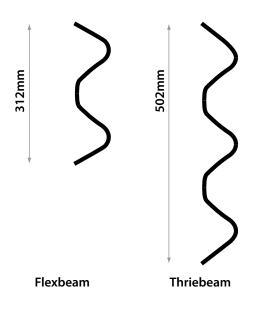


Figure 1: Flexbeam and Thriebeam Comparison

Flexbeam Guardrail Roadside Safety Barrier

6.0 Installation

6.1 Site Preparation

Flexbeam guardrail should be located at least 600mm (measured from back of post) in front of embankments that require shielding. This distance is required to provide proper post support.

The approach terrain to the barrier must be level. Grading to 1:20 is preferable and 1:10 maximum slope should be present. Steeper slopes can result in the vehicle impacting the barrier at other than the design height.

6.2 Installation Sequence

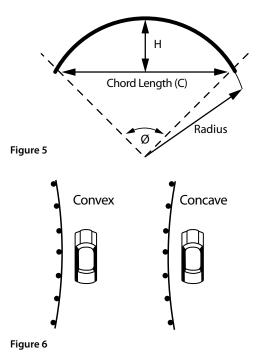
The following written instructions should be read in conjunction with Ingal Civil Products' drawings:

- 1. Ensure the area has been inspected for underground hazards and that suitable traffic control is in place.
- 2. Post locations are marked ensuring the hazard to be protected is located outside the expected dynamic deflection of the barrier.
- 3. The post is orientated with no post edges presented towards the traffic.
- 4. Posts are driven directly into the ground and should be vertical. (The post installation process shall not cause damage to the post, such that it reduces the effective operation of the safety barrier or its design life, or introduces sharp tearing edges, nor shall it cause damage to pavement). Alternately, a hole can be augured and the post placed in the hole. The posthole is then backfilled with the material that was excavated. Material should be placed in layers and suitably compacted to not less than the density of the surrounding layers.
- Blocking pieces are then attached to the posts using M16 hex. head bolts. The function of the blocking piece is to prevent wheel snagging and vehicle vaulting.
- 6. Rails are attached to the blocking pieces and are spliced using mushroom head bolts. The holes in the rails for attachment to the blocking pieces are slotted to allow for tolerances in post spacing.
- 7. Rails are spliced together at every second post using M16x32mm mushroom head bolts. Rails are orientated so that no leading edges are presented to the traffic face. At post locations where there is not a rail splice, a stiffener piece is inserted behind the rail. Washers are NOT used.
- 8. It is recommended that posts be installed only a few metres ahead of rail assembly to ensure correct post spacing and alignment. On curves, the rails can be used as a template and laid on the ground to determine post locations.

Figure 3: Splice Connection

Flexbeam Guardrail Roadside Safety Barrier

6.3 Curving

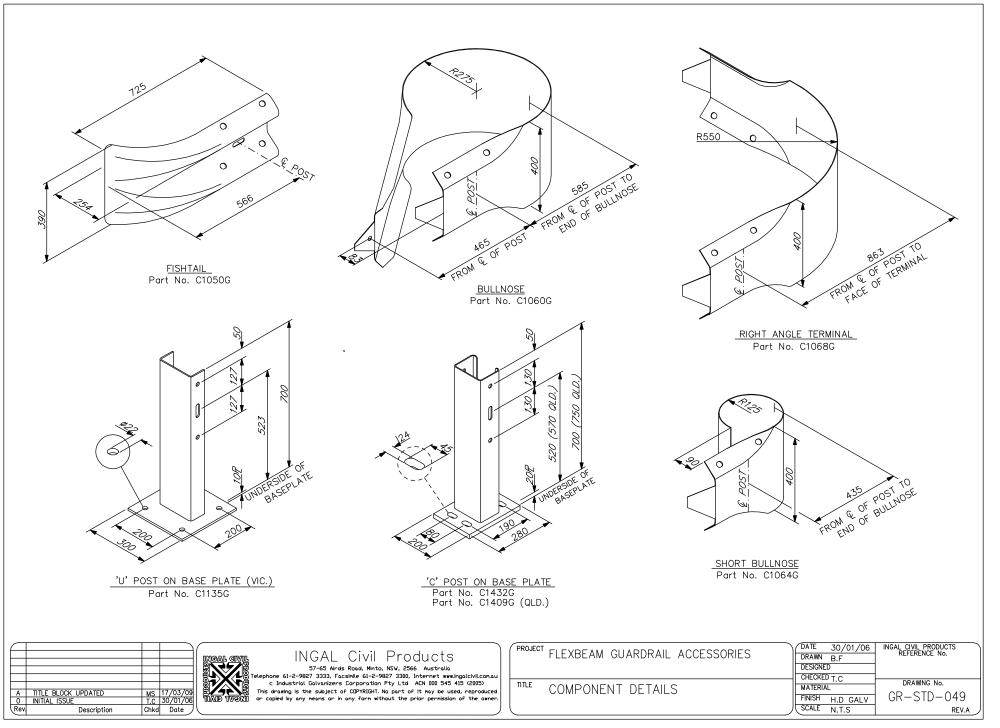

FLEXBEAM guardrail may be shop curved to fit any radius from 2.4m to 46m. Curves in excess of 46m radii do not require shop curving as the lap joint accommodates itself to such installations. Rail may be curved either concave or convex to the traffic face and can be part curved along its length to suit your needs.

6.3.1 Measuring Curvature

- 1. Depending on your length of rail, mark along your arc at 4m or 5m intervals
- 2. Measure the corresponding chord length (C) – Refer to Figure 5
- Measure the corresponding centre offset (H)

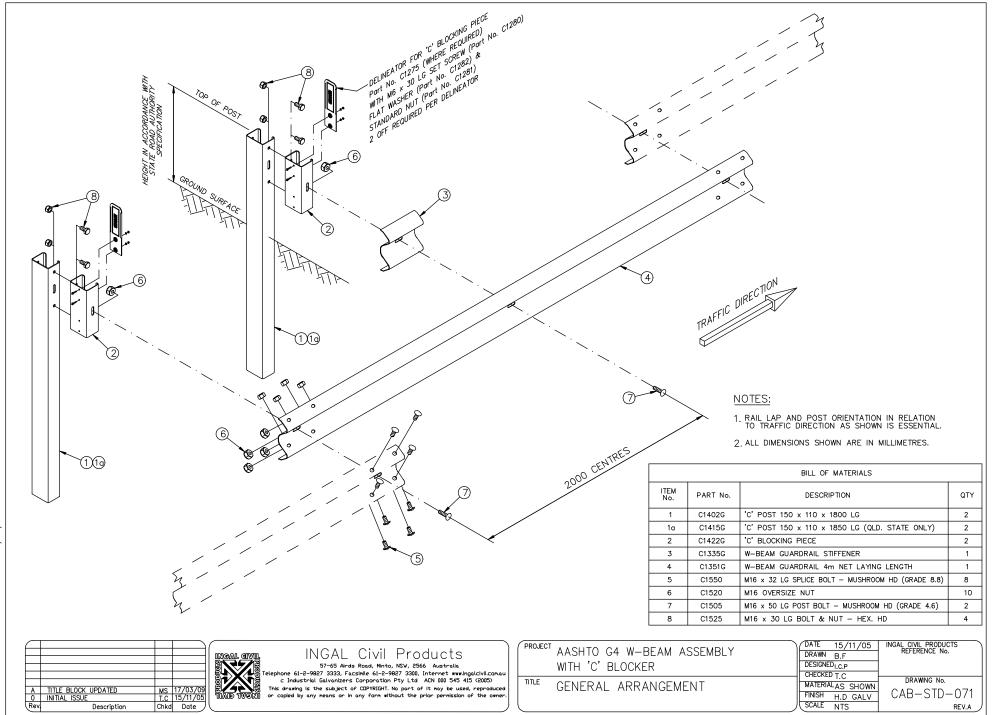
 Refer to Figure 5
- 4. Use the values for C and H to select the radius from Table 5
- 5. Determine the curvature orientation from Figure 6

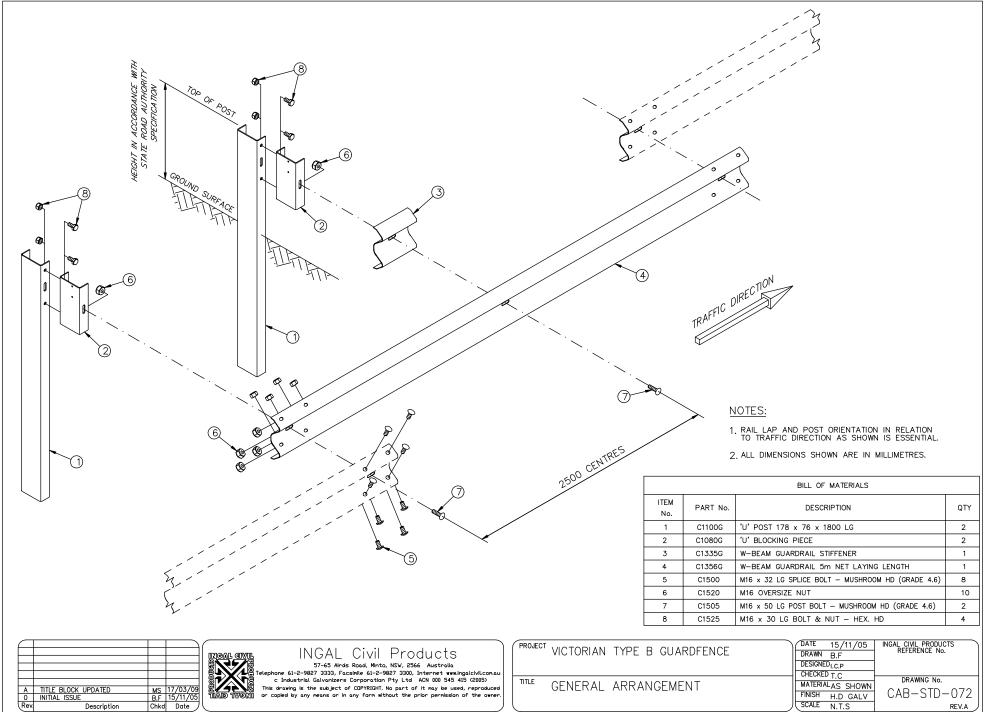
	Table 5: Radius of Curvature					
	4000mm Rail		5000mm Rail			
Radius m	Ø Degrees	C mm	H mm	Ø Degrees	C mm	H mm
2.4	95.5	3553	786	119.4	4144	1189
3	76.4	3710	642	95.5	4441	983
4	57.3	3835	490	71.6	4681	756
5	45.8	3894	395	57.3	4794	612
6	38.2	3926	330	47.8	4857	513
7	32.7	3946	284	40.9	4894	442
8	28.7	3958	249	35.8	4919	387
9	25.5	3967	221	31.8	4936	345
10	22.9	3973	199	28.7	4948	311
12	19.1	3982	166	23.9	4964	259
14	16.4	3986	143	20.5	4973	223
16	14.7	3990	125	17.9	4980	195
20	11.5	3993	100	14.3	4987	156
24	9.6	3995	83	11.9	4991	130
28	8.2	3997	71	10.2	4993	112
32	7.2	3997	62	8.9	4995	98
35	6.6	3998	57	8.2	4996	89
40	5.7	3998	50	7.2	4997	78
45	5.1	3999	44	6.4	4997	69


7.0 End Terminals and Transitions

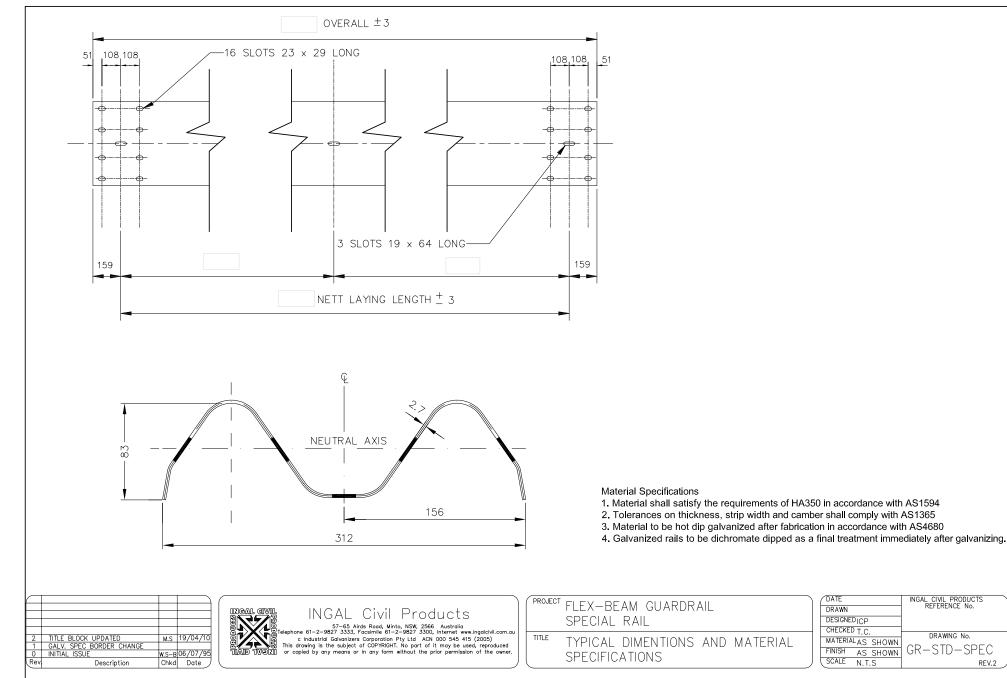
Guardrail end terminals are designed to provide a soft gating impact to prevent the end rail from spearing an impacting vehicle. Terminals also introduce tensile and flexural strength necessary to ensure redirection performance of the length-of-need section.

Transitions are required when Flexbeam guardrail is terminated at a bridge abutment or a concrete parapet.

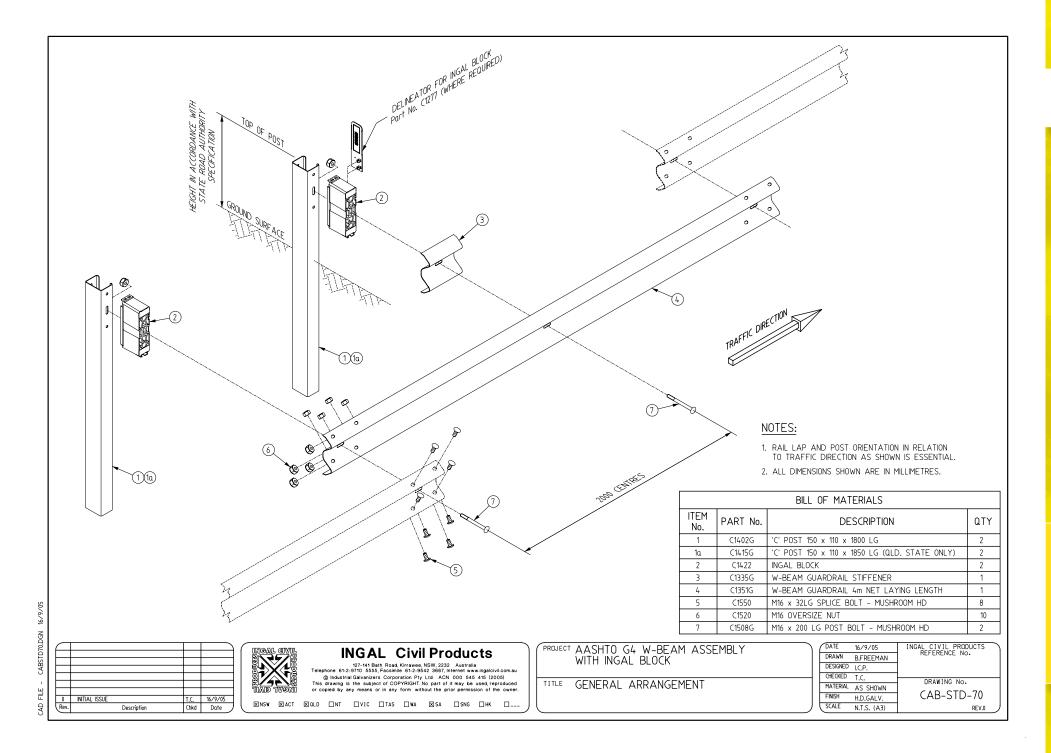

The purpose of a transition is to smoothly increase the stiffness of the approach guardrail from the more flexible to the less flexible system.


CAD FILE - GR-STD-049.DWG 30/01/06

S

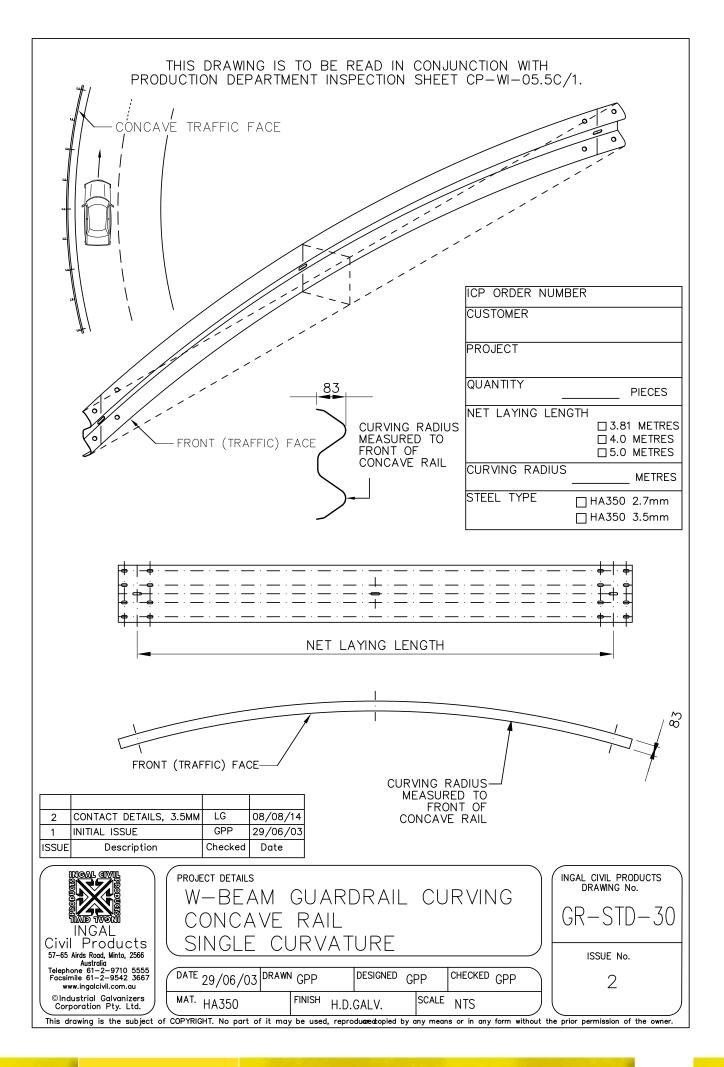

0

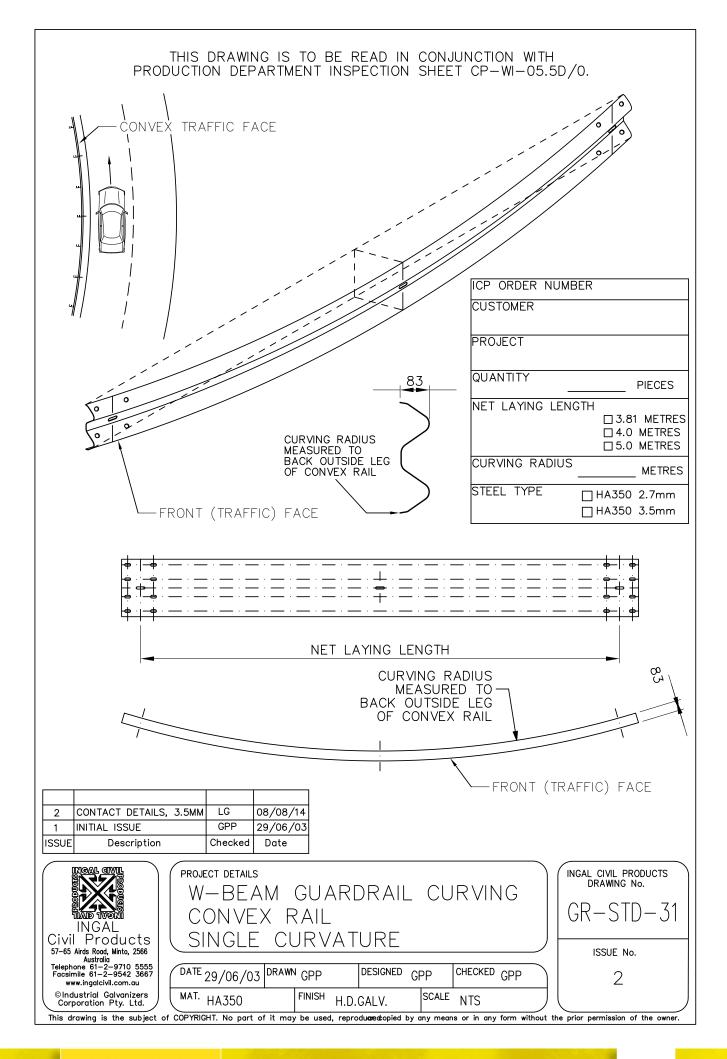
Release 08/14



CAD FILE - CAB-STD-072.DWG 15/11/05

Release 08/14




INGAL CIVIL PRODUCTS REFERENCE No. DRAWN DESIGNEDICP CHECKED T.C. DRAWNG No. MATERIALAS SHOWN GR-STD-SPEC FINISH AS SHOWN SCALE N.T.S REV.2

Release 08/14

9

For more information

contact us on the web WWW.ingalcivil.com.au

Head Office: Sydney 57-65 Airds Road, Minto, NSW 2566 Ph: +61 2 9827 3333 Fax: +61 2 9827 3300 Free call (within Australia): 1800 803 795 Email: sales@ingalcivil.com.au

Our Locations:

Adelaide • AucklandBrisbane • Melbourne

- Newcastle Wagga
- Perth Sydney